Fully Bayesian Field Slam Using Gaussian Markov Random Fields
نویسندگان
چکیده
This paper presents a fully Bayesianway to solve the simultaneous localization and spatial prediction problemusing aGaussianMarkov randomfield (GMRF)model. The objective is to simultaneously localize robotic sensors and predict a spatial field of interest using sequentially collected noisy observations by robotic sensors. The set of observations consists of the observed noisy positions of robotic sensing vehicles and noisy measurements of a spatial field. To be flexible, the spatial field of interest is modeled by a GMRF with uncertain hyperparameters. We derive an approximate Bayesian solution to the problem of computing the predictive inferences of the GMRF and the localization, taking into account observations, uncertain hyperparameters, measurement noise, kinematics of robotic sensors, and uncertain localization. The effectiveness of the proposed algorithm is illustrated by simulation results as well as by experiment results. The experiment results successfully show the flexibility and adaptability of our fully Bayesian approach in a data-driven fashion.
منابع مشابه
Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping
Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio–temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurr...
متن کاملEfficient Spatial Prediction Using Gaussian Markov Random Fields under Uncertain Localization
In this paper, we develop efficient spatial prediction algorithms using Gaussian Markov random fields (GMRFs) under uncertain localization and sequential observations. We first review a GMRF as a discretized Gaussian process (GP) on a lattice, and justify the usage of maximum a posteriori (MAP) estimates of noisy sampling positions in making inferences. We show that the proposed approximation c...
متن کاملNorges Teknisk-naturvitenskapelige Universitet Fitting Gaussian Markov Random Fields to Gaussian Fields Fitting Gaussian Markov Random Fields to Gaussian Fields Tmr Project on Spatial Statistics (erb-fmrx-ct960095) for Support and Inspiration
SUMMARY This paper discusses the following task often encountered building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in observed data or consistent with prior knowledge. The Markov property is essential in design of computational efficient Markov chain Monte Carlo algorithms used to analyse suc...
متن کاملTransformed Gaussian Markov Random Fields and 1 Spatial Modeling
15 The Gaussian random field (GRF) and the Gaussian Markov random field (GMRF) have 16 been widely used to accommodate spatial dependence under the generalized linear mixed 17 model framework. These models have limitations rooted in the symmetry and thin tail of the 18 Gaussian distribution. We introduce a new class of random fields, termed transformed GRF 19 (TGRF), and a new class of Markov r...
متن کاملBayesian Estimation for Homogeneous and Inhomogeneous Gaussian Random Fields
This paper investigates Bayesian estimation for Gaussian Markov random elds. In particular, a new class of inhomogeneous model is proposed. This inhomogeneous model uses a Markov random eld to describe spatial variation of the smoothing parameter in a second random eld which describes the spatial variation in the observed intensity image. The coupled Markov random elds will be used as prior dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015